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ABSTRACT

The Rust programming language is lauded for enabling fearless

concurrency with zero cost: detecting concurrency errors at compile

time. Given the enduring di�culty of parallel programming in other

languages, this implied panacea warrants analysis. In particular, the

e�cacy of Rust across types of parallelism remains unexplored. Is

parallel programming always devoid of fear with Rust? We answer

this question through a case study, porting 14 benchmarks with

abundant regular and irregular parallelism from C++ to Rust and

reporting our experience and observations. We �nd that Rust, with

the Rayon library, indeed delivers fearlessness for program phases

comprising only regular parallelism, e.g., pre�x-sum. However, for

applications with any irregular parallelism, the programmer must

choose between unsafe code or high-overhead dynamic checks with

errors that manifest at run time, leaving the arduous task of parallel

programming as scary with Rust as with its predecessors.

CCS CONCEPTS

• Computing methodologies → Parallel programming lan-

guages; Parallel algorithms.

KEYWORDS

Rust; fearless concurrency; zero-cost abstraction; regular paral-

lelism; irregular parallelism

ACM Reference Format:

Javad Abdi, Gilead Posluns, Guozheng Zhang, Boxuan Wang, and Mark C.

Je�rey. 2024. When Is Parallelism Fearless and Zero-Cost with Rust?. In

Proceedings of the 36th ACM Symposium on Parallelism in Algorithms and

Architectures (SPAA ’24), June 17–21, 2024, Nantes, France. ACM, New York,

NY, USA, 14 pages. https://doi.org/10.1145/3626183.3659966

∗This work was done while Javad Abdi was at the University of Toronto.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

SPAA ’24, June 17–21, 2024, Nantes, France

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0416-1/24/06
https://doi.org/10.1145/3626183.3659966

1 INTRODUCTION

fear n. 1. a. an unpleasant emotion caused by anticipation or

awareness of danger —adapted from Merriam-Webster

Computer architectures are now parallel by default, yet apart

from exceptional cases, the notorious challenges of parallel pro-

gramming endure. On one hand, a few application domains have

sustained performance and productivity booms since the shift to

multicores [122] in part due to their abundant “obvious” [3] sources

of parallelism. On the other hand, parallel algorithm experts have

uncovered surprising opportunities for task-level parallelism in

conventionally challenging domains [7, 29, 30, 46, 47, 87, 112]. Al-

gorithms in the former domains typically have abundant regular

parallelism, where data and control dependences among tasks are

statically identi�able. Algorithms in the latter face irregular par-

allelism, with dynamically manifesting data and control depen-

dences [87]. Scheduling tasks and synchronizing irregular data

accesses continue to tax programmers with pitfalls such as non-

determinism [66], deadlock, data races, and other concurrency

bugs [68, 134]. A plethora of work in programming languages [8,

19], extensions [9, 11, 26, 93], and type systems [44, 78] has sought

to curtail these errors, yet few have reached mainstream adoption.

Rust is gaining traction as a systems programming language

for building fast and reliable applications [70]. It has been the

most loved [115] or admired [116] language on the Stack Over�ow

Developer Survey for eight consecutive years, and has been adopted

into major open-source and proprietary software [6, 18, 33, 48, 52,

54, 55, 83, 103, 118]. Rust unites higher-level safety and lower-level

resource control by leveraging its type system, built atop prior work

on ownership [45, 124], to capture memory and concurrency bugs at

compile time. The golden rule of the Rust type system is that aliasing

implies immutability: at any point in the program, every value has

either one mutable or possibly several immutable references to

it, i.e., 0;80B8=6 -$' <DC018;8C~ [58] or AXM for short [133]. These

restrictions enable Rust to statically provide memory safety without

garbage collection and rule out data races. In fact, the Rust book

introduces concurrency and parallelism features with a chapter

entitled “Fearless Concurrency” [63, Chapter 16].

Unfortunately, Rust’s AXM restriction precludes important in-

stances of parallelism: sometimes tasks must mutate aliased state.

Like some type-safe languages, Rust o�ers �exibility through unsafe

code blocks where ownership rules can be violated, raw pointers

manipulated, and other unsafe operations performed [102]. Con-

ventional wisdom suggests that Rust programmers (i) minimize
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the footprint of their unsafe code, and (ii) encapsulate unsafe code

within safe APIs with run-time checks [4, 59, 63].

The interaction between safe and unsafe Rust code has garnered

attention in prior work and we focus on concurrency and paral-

lelism. RustBelt [58] and RustBelt Relaxed [27] prove the soundness

of the Rust type system and provide tools for verifying encapsula-

tion of unsafe code. Qrates [4] analyzes how unsafe is used across

34,000+ Rust projects on crates.io, �nding that unsafe concurrency

blocks exist, but are rare. Qin et al. uncover concurrency and mem-

ory safety bugs in large-scale open-source systems software (e.g.,

an OS, browser, and blockchain) [89]. While prior work investigated

Rust support for multi-threaded systems software, as far as we are

aware, Rust’s purported fearless concurrency has yet to be studied

through the lens of regular vs. irregular parallelism [87].

This paper presents a case study of Rust’s parallelism support

across 14 benchmarks with �ne-grain regular and irregular task-

level parallelism, drawn from the Problem Based Benchmark Suite

(PBBS) [2, 113] or using a MultiQueue [95]. In one view, our work

grapples with the promise of Rust for parallelism as prior work

did with transactional memory [69, 99]. We provide a spectrum of

fear in parallel programming (Sec. 3). We report our observations

in porting C++ benchmarks to Rust and present Rust’s strengths,

shortcomings, and trade-o�s along the way. We �nd that Rust

indeed makes us fearless when expressing applications with regular

accesses (Sec. 4) but fear remains in case of irregular accesses (Sec. 5).

Nevertheless, the regularity of task scheduling does not impact the

level of fearlessness that Rust provides (Sec. 6). Resulting from

this study is the Rust Parallel Benchmarks suite (RPB) [98], with

switches to toggle unsafe parallel features. We characterize the

frequency of regular and irregular access patterns in the suite and

what Rust techniques they demand. Our Rust-based benchmarks

are gmean 1.44× slower than their equivalents in C++ (Sec. 7).

In short, this paper makes the following key contributions:

• A case study of Rust’s support for regular vs. irregular task-level

parallelism, focusing on compile-time vs. run-time knowledge of

(i) accesses to shared data, and (ii) task scheduling.

• Recommended Rust expression of regular/irregular patterns.

• The �rst Rust benchmark suite with �ne-grain regular/irregular

parallelism to seed language, compiler, and runtime research.

• A performance evaluation of RPB at 24 cores, showing it is com-

petitive with C++ equivalents of the benchmarks.

2 BACKGROUND

2.1 Rust’s type system makes it safe

Rust is a safe and fast programming language. Rust safety is rooted

in its three ownership rules: each value (i) has an owner (e.g., named

function parameter or anonymous temporary); (ii) has only one

owner at a time; and (iii) gets dropped after its owner goes out

of scope [63]. A value’s ownership can be transferred (e.g., from

caller to callee function or from producer to consumer thread), but

ownership transfer alone is too restrictive for common program-

ming patterns (e.g., a caller losing access). To relax these rules, Rust

code can temporarily borrow references to values. Each reference

is coupled with a lifetime, the scope in which the reference is valid.

The heart of a Rust compiler (e.g., rustc), is the borrow checker that

checks reference validity and importantly forbids aliased mutable

1 let mut sum = 0;

2 thread::scope(|s| { // First mutable reference ---+-'1

3 s.spawn(|| { // Second reference = Error --+-'2 |

4 sum += vector[..mid].iter().sum(); // | |

5 }); // ---+ |

6 sum += vector[mid..].iter().sum(); // |

7 }); // --------+

a) The rustc borrow checker catches a data race on sum due to

overlapping lifetimes ’1 and ’2 with mutable references to sum.

1 let locked_sum = RwLock::new(0usize);

2 thread::scope(|s| {

3 s.spawn(|| {

4 let local_sum = vector[..mid].iter().sum();

5 *locked_sum.write().unwrap() += local_sum;

6 });

7 let local_sum = vector[mid..].iter().sum();

8 *locked_sum.write().unwrap() += local_sum;

9 });

10 let sum = *locked_sum.read().unwrap();

b) Synchronization, a form of interior mutability, solves the issue.

Listing 1: Two-threaded summation of a vector in Rust.

references with overlapping lifetimes. A reference can write to a

value at a given time i� it is the only reference to that value (AXM).

Ownership and borrowing rules enable Rust to enforce memory

safety and statically rule out data races. Our paper focuses on the

latter. A program has a data race if there exists an execution in

which at least one access in a pair of con�icting accesses [110] from

di�erent threads is not atomic [53, 107]. Since Rust forbids mutable

aliasing (AXM), it rules out the possibility of threads making con-

current accesses to mutable shared state. For example, Listing 1(a)

shows an incorrect parallel vector summation, as increments to

sum are not atomic. The rustc borrow checker catches this bug at

compile time, because sum is mutably aliased between two threads.

Interior mutability enables programmers to mutate shared data

when it is safe to do so [63]. For example, Listing 1(b) eliminates the

data race by synchronizing with a RwLock, but Rust’s type system

does not actually di�erentiate between synchronized and unsyn-

chronized accesses. Instead, the read and writemethods of RwLock

take immutable references to the lock while allowing mutations

of the underlying data. This instance of interior mutability is safe

because RwLock dynamically enforces AXM for the underlying data.

2.2 Unsafe Rust is more expressive than Rust

Although the Rust type system has been proven sound [27, 58], it is

incomplete [96]. Its strictness precludes implementing essential pat-

terns and data structures, like a sequential doubly linked list [4, 76].

Unsafe Rust is an embedded language that expands expressiveness

to code for which rustc cannot guarantee safety. Programmers

can demarcate unsafe blocks where they perform operations that

rustc cannot guarantee to be safe, such as dereferencing pointers

or accessing arrays without bounds checking, among others [102].

When unsafe blocks are necessary, best practice minimizes code

base pollution through the use of safe abstractions, known as in-

terior unsafe [89], that move safety checking from compile time

to run time [4, 59, 63]. In fact, the vectors, threads, and RwLock of

Listing 1 have many interior unsafe functions. Yet the programmer

is unaware or unconcerned about their unsafe blocks because the

interfaces encapsulate them. Listing 2 shows an interior-unsafe

function that removes an element from a vector (self). Unsafe
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1 fn remove(&mut self, index: usize) -> T {

2 assert!(index < self.len); // run-time safety check

3 unsafe {

4 let ptr = self.as_mut_ptr().add(index);

5 let ret = ptr::read(ptr);

6 ptr::copy(ptr.add(1), ptr, self.len - index - 1);

7 self.len -= 1;

8 return ret;

9 }

10 }

Listing 2: A Rust std library interior-unsafe function that

validates unsafe code with a run-time assertion.

operations must be wrapped in an unsafe block. Conventional wis-

dom suggests preceding them by checks that validate the contract

of the safe abstraction. Line 2 veri�es having a valid index. Interior

unsafe does not necessarily crash upon failed validation: Vec::pop

returns None for an empty vector. Interior unsafe is also common

in multithreaded code that mutates shared state (Sec. 4, 5, 6).

2.3 Rust libraries ease expression of parallelism

Rust’s standard library provides basic tools for parallelism like

threads, channels, locks, and async tasks, but external libraries

build on these to provide safe higher-level abstractions [65] to make

parallelism easier. Rayon [71] expresses data parallelism through

constructs such as parallel iterators. Tokio [125] asynchronously

performs network and �lesystem I/O operations. Other libraries

provide expanded [24] or optimized [86, 114] synchronization prim-

itives, concurrent data structures [28], and thread pools [123].

These libraries commonly use interior-unsafe functions to cir-

cumvent Rust’s strict enforcement of AXM, and broaden its capabili-

ties. Rayon’s mutable parallel iterators use interior-unsafe to share

mutable references to disjoint parts of a data structure among tasks

(Sec. 4.2). crossbeam [24] provides a thread-safe alternative to Cell

with explicit annotations of thread safety in unsafe Rust.

These e�orts target common use cases and relieve beginners of

the burden of parallel programming without the AXM guardrails. Yet,

the typically avoided complex cases remain as challenging as ever.

3 STUDY OVERVIEW

We investigate when Rust delivers or fails in its promise of fearless

concurrency through two lenses: (i) regular vs. irregular accesses,

and (ii) static vs. dynamic task scheduling. Fig. 1 frames our case

study, adapting the Tao Analysis of Algorithms [87] beyond graphs.

Three dimensions a�ect the regularity of task-level parallelism.

• Data Structure: Tasks might access a shared data structure, whose

topology in�uences regularity of accesses. Structured data (e.g.,

arrays or matrices) are described using few parameters (e.g.,

length or rows/columns, respectively). Unstructured data (e.g.,

arbitrary graphs) require verbose description (e.g., CSR).

• Operator: Tasks may operate on shared data within a phase. Tasks

are local read-write operators of a data structure if they make task-

private accesses to its sub-elements (e.g., each task reads and/or

writes a distinct vertex in a graph). Tasks are arbitrary read-write

operators of a data structure if they read and write (potentially)

overlapping sub-elements (e.g., each task reads a neighborhood

of vertices and updates one or more of them). Tasks are readers

of a data structure when none of them write to it.

Operator
Read-only

Local	read-write

Parallelism	

irregularity	

index

∧

Data

Structure

Structured

Unstructured

Set	of

tasks
∧

Unordered

Ordered
Ordering

Static

Dynamic
Dispatching

Arbitrary	read-write

Figure 1: Analysis of Rust support for parallel patterns.

• Set of Tasks: Whereas the previous dimensions a�ect regularity

of data dependences, two factors a�ect control dependences:

(i) when tasks are discovered and (ii) if tasks must execute in

(partial) order. Tasks are statically dispatched when the set of tasks

is known before entering a parallel phase, but are dynamically

dispatched if tasks �nd and schedule new work on the �y.

Navigating this space implies the regularity of an algorithm or

a phase. For example, any operator on structured data with static

task scheduling is regular (e.g., a parallel reduction on an array

or a stencil computation). In contrast, a parallel relaxed Dijkstra’s

algorithm [88] is irregular: reading and writing arbitrary vertices

of unstructured data with dynamic and ordered task scheduling.

We �nd that the regularity of task accesses to shared data is

the primary factor to facilitate or impede fearless parallelism. Rust

excels at making programmers fearless when expressing parallel

patterns with regular write sets (Sec. 4). Challenges emerge with

local read-write irregular parallelism and arbitrary read-write oper-

ations remain as scary as ever. (Sec. 5). Interestingly, dynamic task

scheduling does not a�ect fearlessness, only task accesses (Sec. 6).

3.1 What is fearless concurrency?

The anticipated danger that inspires fear in parallel programmers

is the potential for concurrency errors that manifest at run time.

Sequential errors are bad enough, but it is the nondeterminism [66]

of concurrency errors that is so nefarious. Detecting a bug is elusive

and reproducing can be even harder. Fearless concurrency is the

Rust Team’s nickname for their goal that “[...] you can �x your code

while you’re working on it rather than potentially after it has been

shipped to production” [63]. This nickname warrants analysis.

At one extreme, Rust will rule out all mixing of aliasing and

mutability at compile time for any program devoid of unsafe blocks,

including its libraries. For such a program, any concurrency error

is caught at compile time. This restrictive situation is likely rare.

At the other extreme, Rust can rule out data races for programs

requiring lock-based or lock-free synchronization [15]. However,

data-race freedom does not imply freedom from atomicity viola-

tions [39], order violations [68], deadlocks, and livelocks.

Between these extremes are programs that algorithmically elide

synchronization but require interior unsafe APIs to placate rustc.

Such functions use static and/or dynamic checks to validate their

contracts. With dynamic checks, validation failures move from com-

pile time to run time. Although encapsulated dynamic checks move

an error’s symptom close to the cause, crashes in production remain

possible, leaving fear with some hope for a clear postmortem.

Taken together, we �nd that fearless concurrency is better in-

terpreted as a spectrum, illustrated in Fig. 2: ideally eliminating
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Fearless:	

Errors	get	caught	at	run	time	(symptoms	close	to	cause)Comfortable:

Scared:

Concurrency	errors	get	caught	at	compile	time

Concurrency	errors	may	happen	without	being	detected

Figure 2: A spectrum of fear in parallel programming.

any fear of concurrency errors at compile time (fearless), but if not

possible, keeping run-time error symptoms close to their causes

(comfortable), or otherwise providing no guarantees of reproducing

the cause nor the symptom (scared).

3.2 Study methodology

We derive our �ndings by studying how parallel algorithms experts

express parallelism. Unfortunately, there is a lack of Rust bench-

mark suites with abundant irregular parallelism. Therefore, we port

12 benchmarks from PBBS [2, 113] (a representative subset) and 2

using the MultiQueue priority scheduler [95]. This methodology is

analogous to how Ruan et al. replaced locks with transactions in

legacy code (memcached) [99]. The key distinction is that we tar-

get algorithm implementations instead of legacy systems software

code. This enables us to evaluate various parallel patterns. For each

pattern, we show that its naive implementation in Rust that imi-

tates C++ may require unsafe Rust. We then provide idiomatic Rust

solutions, categorize their fearlessness, and report on performance.

PBBS is a C++ benchmark suite that encompasses diverse parallel

patterns and application domains such as text, geometry, graphs,

and more. PBBS provided or in�uenced the implementations of

several state-of-the-art parallel algorithms [7, 30, 130]. PBBS incor-

porates both regular and irregular parallelism as inseparable parts

of each benchmark, making it an appropriate choice for our study.

The MultiQueue broadens our study with dynamic task schedul-

ing, which is lacking in PBBS. This relaxed priority queue grants

probabilistic rank guarantees and scales well to large numbers of

threads [88]. We use the MQ as a task scheduler in two benchmarks.

We use Rayon for some parallel operations and runtime schedul-

ing. Rayon is a Rust work-stealing-based data-parallelism library

that is adopted in major Rust projects including Firefox, Servo,

Solana, Meilisearch, HHVM, and the rustc compiler. Rayon is writ-

ten by Rust experts who made contributions to rustc [71], drawing

inspiration from Cilk [9]. We extensively use Rayon’s parallel itera-

tors, which resemble standard Rust iterators, but its consumers (e.g.,

map, reduce, and for_each) execute in parallel by interior-unsafe

functions. Appendix A elaborates on our rationale for using Rayon.

When Rayon lacks our desired functionality, we use Rust’s standard

library tools such as threads or mutexes.

We organize our case study from straightforward types of par-

allelism (Sec. 4) to more di�cult (Sec. 5 and Sec. 6). Overall, we

�nd that irregular writes or the combination of regular writes with

irregular reads from shared data preclude Rust support for fear-

lessness, necessitating the conventional synchronization that has

scared programmers for decades.

4 REGULAR ACCESSES TO SHARED DATA

When the set of tasks and their data dependences are statically

known or parameterized, this regular parallelism can be validated

at compile time, eliminating most run-time overheads of parallel

scheduling. This includes read-only operators on any data structure

a) Each task reads its chunk;

main thread gathers intermedi-

ate sums.
Main	Thread:

Tasks: T2 TnT1

Vector:

T

1 int* sums = par_for (i=0; i<chunks_no; i++) {

2 int sum = 0, s = i*chunk_size, e = (i+1)*chunk_size;

3 for (j=s; j<e; j++) sum += vector[j];

4 return sum;

5 }

6 int result = 0;

7 for (i=0; i<chunks_no; i++) result += sums[i];

b) C-like code

1 let result = vector.par_chunks(chunk_size)

2 .map(|chunk| chunk.iter().sum())

3 .sum();

c) Rust easily expresses read-only parallelism.

1 let mut result = 0;

2 vector.par_chunks(chunk_size)

3 .for_each(|chunk| result+=chunk.iter().sum()); // error

d) rustc detects a data race: unsynchronized writes to result.

Listing 3: AXM implementation of parallel sum.

or local read-write operators on structured data (Fig. 1). For now,

we assume that the set of tasks is statically known and they are

unordered. At the simplest extreme, tasks that only read shared col-

lections are trivial to check for errors. Rust indisputably keeps read-

only parallelism fearless by tracking reference mutability (Sec. 4.1)

to detect any errors. Writes to shared data cause dependences,

but when they are statically analyzable (Sec. 4.1) or constrained

(Sec. 4.2), Rust and Rayon, respectively, enable fearless parallel

expression among independent tasks.

4.1 Statically safe patterns rustc understands

Rust provides its strongest guarantees for phases where rustc

validates conformance to AXM. AXM is trivially true for read-only par-

allelism: aliasing XOR 0 allows aliasing. However, Rust still shines

when expressing tasks with local reads and writes on statically

sized, structured data like arrays. rustc tracks ownership at �ne

granularity for these data structures, down to individual elements.

With no aliasing, 0 XOR mutability permits task-private writes.

Immutable shared data accessors:With read-only parallelism,

tasks do not mutate shared data, but instead summarize a collection

into a small value to be returned and sequentially processed and/or

merged into an array. Listing 3(b) demonstrates this pattern in a

C-like reduction. Each task reads a chunk of vector and returns

its sum. This pattern is easily implemented in Rust as it upholds

AXM. Listing 3(c) shows the reduction in Rust, where each iteration’s

closure immutably borrows a chunk and accesses no other data.1

Read-only parallelism is fearless in Rust because the compiler

detects any unintended writes to shared data. In Listing 3(d), a task’s

attempt to mutate result is rejected by rustc due to potential

data races. In read-only parallelism, tasks do not mutate shared

references. If the borrow checker detects that the for_each closure

borrows any mutable references, it will reject compilation.

Read-only parallelism is the most straightforward to express and

easily aligns with Rust’s AXM rules. However, it constitutes only

1Rayon may use unsafe Rust to collect the intermediate results, but those unsafe blocks
are encapsulated behind safe APIs and do not generate run-time errors.
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11% of the parallel code in our benchmarks. A language supporting

fearless parallelism must support a broader set of patterns.

Observation 1: Safe Rust enables fearless read-only parallelism

where mutable references to shared data are absent.

Statically analyzable writes: Rust’s destructuring mechanism al-

lows rustc to track references at a �ne granularity for statically

sized structured data like arrays. Since destructuring rules out alias-

ing, then 0 XOR mutability ideally permits task-local writes. The

following example destructures array into its first and last el-

ements, and creates slice middle from the remaining elements.

Concurrent tasks can mutably borrow these three parts.

let [first, middle@.., last] = &mut array;

Unfortunately, destructuring has two limitations: (i) it does not

support dynamically sized data structures like vectors, crucial for

writing input-size-dependent applications, and (ii) it inhibits many

parallel patterns. The following shows destructuring failing to split

array into three equal-sized chunks to evenly distribute work.

let [a@0..3, b@3..6, c@6..9] = &mut array; // compile error

Observation 2: Although destructuring grants fearlessness, it is

cumbersome for expressing load-balanced parallelism.

4.2 Statically safe interior unsafe patterns

Rayon enables Rust to provide fearless parallel programming for

patterns with local reads and writes to dynamically sized structured

data. rustc tracks references of dynamically sized data structures

(e.g., vectors) at the granularity of the whole data structure, causing

inter-task aliasing. Rayon mitigates this with interior-unsafe func-

tions that statically constrain each task’s accesses to a unique subset

of elements, enabling some parameterized access patterns to con-

form to AXM at a �ne per-element or chunk granularity. These are

zero-cost abstractions: the programmer pays no run-time overhead

for gaining safety [63]. Two patterns in PBBS �t this category.

Striding writes (array[i] = f()): In this Stride pattern, each

task )8 performs its local access to index i of the mutably aliased

target array2 and only reads from other immutable shared data

structures. The C code in Listing 4(b) stores the square of each

vector element in place, using Stride. This pattern is statically

known to be safe and race-free, but rustc does not understand that

the accesses are non-overlapping because of the aliased references

to the whole vector. Correctly but naively implementing this pat-

tern in Rust (Listing 4(c)) triggers the borrow checker to reject the

program. This conservatism remains useful when the programmer

actually makes an error, like the data race in Listing 4(d).

Rayon convinces rustc that this pattern is safe through careful

use of interior-unsafe functions that restrict each task to access

only the element of the mutably shared vector passed to it. Each

task in Listing 4(e) can only access vector through reference vi

(vector[i]). Using unsafe blocks, Rayon’s par_iter_mut interior

unsafe function creates a mutable parallel iterator over vector

and passes each vector element, one by one, to the closure passed

to for_each. par_iter_mut is a zero-cost abstraction that only

requires static checks. While iterations of the loop are executing,

the mutable reference to the vector remains alive (lifetime ’1). If

2In general, striding indexes are : ∗ 8 , but PBBS only uses : = 1.

a) Task)8 accesses element i of

the vector.
Vector:

Tasks: T2 T3 Tn-1 TnT1

1 par_for (int i=0; i<n; i++) { vector[i] *= vector[i]; }

b) C-like code
1 (0..n).into_par_iter()

2 .for_each( |i|

3 vector[i] *= vector[i]

4 );

c) rustc throws compile error:

vector is mutably aliased.

1 (0..n).into_par_iter()

2 .for_each( |i|

3 vector[i] *= vector[i-1]

4 );

d) Not allowing mutable aliases,

rustc catches a data race.

1 vector.par_iter_mut() // -+-'1

2 .for_each( |vi| // |

3 *vi *= *vi // |

4 ); // -+

e) Rayon helps Rust to safely

express this pa�ern.

1 vector.par_iter_mut()

2 .enumerate()

3 .for_each( |(i, vi)|

4 *vi *= vector[i-1]

5 );

f) Using Rayon, data races will be

caught as compile errors.

Listing 4: Squaring elements of vector using Stride.

Tasks access equally sized non-

overlapping chunks.

T2 TnT1

Vector:

Tasks:

1 vector.par_chunks_mut(size) // size == each chunk's size

2 .for_each(|a| ...); // a == vector[i*size..(i+1)*size]

Listing 5: Tasks access equally sized chunks using Block.

any closure attempts to access vector directly (Listing 4(f)), the

borrow checker rejects compilation to avoid data races.

Blockingwrites (array[i*size..(i+1)*size] = f()):Whereas

Stride pattern tasks operate on individual elements, Block pattern

tasks perform local accesses on equally sized chunks of the mutably

aliased array. Like Stride, these chunks are statically known to be

non-overlapping. Rayon provides the par_chunks_mut function to

express this pattern, shown in Listing 5.

Observation 3: Using elegant static checks, Rayon interior-unsafe

functions express tasks with local reads and writes on structured

data, retaining fearless parallelism despite Rust’s coarse-grain

ownership tracking.

5 IRREGULAR ACCESSES TO SHARED DATA

When data dependences among tasks are known only at run time,

correct interleaving of their irregular accesses must be dynamically

validated or enforced. We call these local read-write operators on

unstructured data or arbitrary read-write operators on any data

structure (Fig. 1). We address ordered tasks and dynamic scheduling

in Sec. 6. On one hand, algorithm invariants can guarantee task

independence within a phase, yet the exact write locations depend

on run-time values. Run-time checks validate the algorithm-to-code

translation (Sec. 5.1). On the other hand, reads and writes to over-

lapping data cause dependences that require synchronized access

interleavings (Sec. 5.2). In both cases, rustc highlights potential

data races by tracking reference mutability and lifetimes. However,

the former eliminates zero-cost abstraction and the latter leaves

programmers with fear of synchronization.
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a) Tasks indirectly access inde-

pendent elements of the vector.

T2 T3 Tn-1 TnT1

0

n
-
2

1

n
-
1

2Offsets:

Vector:

Tasks:

1 par_for (int i=0; i<n; i++) out[offsets[i]] = input[i];

b) C-like code

1 (0..out.len()).into_par_iter()

2 .for_each(|i| out[offsets[i]] = input[i]);

c) Naive implementation in Rust that causes a compile error.

1 (0..out.len())

2 .into_par_iter()

3 .for_each( |i| unsafe { *out_ptr.add(offsets[i]) = input[i]; });

d) Unsafe implementation in Rust: scary.

1 (0..out.len()) // Here, out is a Vec<AtomicU32>

2 .into_par_iter()

3 .for_each(|i| out[offsets[i]].store(input[i], Relaxed));

e) Atomics can placate rustc: scary.

1 out.par_ind_iter_mut(offsets)

2 .enumerate()

3 .for_each(|i, oi| *oi = input[i]); //oi==out[offsets[i]]

f) Interior-unsafe implementation: comfortable but slow.

par_ind_iter_mut checks the o�sets to be unique at run time.

Listing 6: SngInd as a part of a sort routine.

5.1 Local reads and writes of unstructured data

Rust o�ers limited support when tasks are independent based on

algorithmic guarantees. For two common patterns, the programmer

must choose among three undesirable solutions: (i) unsafe Rust (fear

of races), (ii) unnecessary synchronization (fear of synchronization),

or (iii) run-time checks (comfort with overheads).

Single-valued indirect writes (array[B[i]] = f()): In this

SngInd [119] pattern, tasks read and write to independent indices

of a shared array. Tasks could be read-only operators of other data

structures. Listing 6(b) showcases SngInd in C++ as a part of a sort

routine. Arrays input and offsets are immutable. Unlike Stride,

indices into mutable out are indirectly determined via offsets

values and cannot be proven independent, neither statically nor

with cheap run-time checks. There is no need for synchronization:

the (correctly implemented) algorithm guarantees unique o�sets.

This pattern requires run-time checks to ensure the uniqueness

of offsets. Implementation bugs can lead to duplicates, creating

data races. rustc recognizes this risk and rejects compiling the

naive implementation of this program (Listing 6(c)). However, un-

like in Sec. 4, there is no dedicated support for this speci�c pattern.

Rust o�ers three solutions. Listing 6(d) unsafely dereferences a

pointer to write, leaving the programmer scared. Listing 6(e) atom-

ically stores with relaxed ordering to placate rustc, but does not

guarantee uniqueness, leaving programmers scared with potentially

non-deterministic errors. Listing 6(f) introduces par_ind_iter_mut,

our new interior-unsafe function. It checks offsets for unique-

ness in parallel then uses a Rayon parallel iterator that unsafely

passes out’s offsets[i]th element to task )8 . The programmer

rests assured that this interior unsafe approach catches errors at

run time, upgrading fear to comfort. Unfortunately, the run time

of the check can outweigh the useful work (e.g., 2.8× slowdown in

lrs). The programmer must choose between fear and overhead.

The SngInd pattern generalizes beyond o�set arrays. For exam-

ple, a pure [43] o�sets function or even a collection of pointers

a) Tasks indirectly access inde-

pendent chunks of the vector.

T2T1

0 3 8Offsets:

Vector:

Tasks: Tn

n
-
1

1 par_for (i=0; i<offs_len-1; i++)

2 for(j=offsets[i]; j<offsets[i+1]; j++) out[j] = f(...);

b) C-like code

1 out.par_chunks_ind_mut(offsets)

2 .for_each( |local_out|

3 local_out.iter_mut().for_each(|oi| *oi = f(...))

4 );

c) Safe implementation using par_ind_chunks_mut

Listing 7: Ranged indirect access pattern (RngInd).

could similarly be checked for uniqueness with an interior unsafe

function. These were rare in our benchmarks.

Ranged indirect writes (array[B[i]..B[i+1]] = f()): RngInd

is to SngInd as Block is to Stride. In this pattern, offsets[i] and

offsets[i+1] provide the start and end, respectively, of a contigu-

ous chunk passed to task )8 . Listing 7(b) shows C tasks that write

to a contiguous range of out. SngInd solutions (unsafe, synchro-

nization, interior-unsafe) and their trade-o�s apply to RngInd.

However, in our observations, the prevailing version of this pat-

tern is when chunk order aligns with task iteration order.3 We can

exploit this order to check that offsets monotonically increases

to guarantee non-overlapping chunks. Listing 7(c) safely expresses

this pattern with our proposed par_ind_chunk_mut. It creates a

Rayon parallel iterator that dynamically ensures offsetsmonoton-

ically increases when Rayon splits the iterator among tasks. Unlike

SngInd, this is cheap, making comfort an easier trade-o� to accept.

This pattern can also extend beyond an array of o�sets. The

same arguments of SngInd apply.

Observation 4: For patterns with mutable access to independent

subsets of unstructured data, Rust abandons zero-cost fearless par-

allelism: the programmer must choose between unsafe performant

code or unnecessary synchronization and dynamic checks to prove

independence.

5.2 Arbitrary reads&writes of unstructured data

Rust does not eliminate fear when tasks have irregular true data

dependences. For patterns discussed so far, task read and write sets

are independent per phase. However, arbitrary read-write (AW) tasks

have occasional data dependences through mutable unstructured

data. Such behavior is found in application domains spanning graph

analytics, geometry, statistical inference, and others [87]. These

dependences necessitate run-timemechanisms like synchronization

to enforce correct memory access interleavings.

Overlapping reads and writes: When distinct tasks have con-

�icting accesses to the same location, synchronization is usually re-

quired to prevent incorrect access interleavings. Listing 8(a) shows

overlapping read-modify-writes to a parallel hash table in PBBS.

Each task uses function-based indirection to insert into some table

entry. Unlike in Sec. 5.1, hashes are not unique so tasks may be

dependent. Similar overlapping con�icting accesses are common in

graph algorithms like push-based PageRank [131].

3Tasks are independent so are unordered in terms of execution.
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a) C++

1 class HashTable {

2 T[] table;

3 bool insert(T v) {

4 if (CAS(&table[hash(v)], EMPTY, v)) return true;

5 else ...

6 }

7 };

1 struct HashTable { table: Vec<T> }

2 fn insert(&mut self, v: T) { self.table[hash(v)] = v; }

b) Mutating without synchronization is forbidden in Rust.

1 struct HashTable { table: Vec<Mutex<T>> }

2 fn insert(&mut self, v: T) { *self.table[hash(v)].lock() = v; }

c) Even with synchronization, rustc rejects mutable borrows.

1 struct HashTable { table: Vec<Mutex<T>> }

2 fn insert(&self, v: T) { *self.table[hash(v)].lock() = v; }

d) rustc requires marking the borrow as immutable to compile.

Listing 8: Hash Table: a data structure with AW.

Con�icting irregular parallel accesses require synchronization,

which Rust correctly enforces. Accessing an unsynchronized hash

table across threads triggers compile-time errors in Listing 8(b). List-

ing 8(c) wraps each hash table entry with a Mutex and uses lock()

to get a synchronized mutable reference to the entry. Interestingly,

the compile error persists, even with this synchronized insert,

because insertmutably borrows self—Rust does not di�erentiate

synchronized mutable references and unsynchronized ones. Best

practice to solve this is making the hash table interior mutable, en-

abled by Mutex itself being interior mutable. We argue that forcing

the programmer to mark a reference as immutable, even when they

know it will be mutated (e.g., insert), is not intuitive and fails to

make them fearless. Introducing a third type of reference, such as a

mutable shared reference[78], would be more intuitive.

Although rustc rules out data races by identifying a lack of

synchronization, it does not capture synchronization errors. For ex-

ample, �ne-grain locking in Rust remains as susceptible to deadlock

and livelock as in its decades of predecessors. Likewise, program-

mers can incorrectly apply atomic types for lock-free synchroniza-

tion allowing incorrect interleavings of memory accesses from

di�erent tasks. Synchronization with Rust remains as scary as ever.

Benign races appear useful for some parallel operations but require

extreme care to use correctly if even possible [12]. For example, the

following appears to be a truly benign race: a snippet of a parallel

su�x array calculation that �nds distinct characters in string.

1 let present = vec![0u8; 256];

2 string.par_chars().for_each(|c| present[c as usize] = 1);

Thewrites ofmany taskswill race on various elements of present,

but the result remains consistent, regardless of their interleavings,

since all tasks write the value 1. However, this is not portable. Com-

piler transformations can transform benign races into non-benign

ones [12]. Rust uses the C++ memory model for atomics [102]. Both

languages are strive for portable code. At the language level, these

stores would seem to be benign races; one might assume they

will map to a single instruction. Compilers generate code across a

diversity of ISAs, including di�erent bit widths in the data path. Hy-

pothetically, if present were an array of 64 bit integers but the ISA

only provided 32 bit stores, the compiler would necessarily break

these stores into two, losing atomicity. This issue is one of several

reasons why the C++ standard disallows “potentially concurrent

con�icting actions” [53]. rustc correctly refuses to compile this

code, forcing the programmer to use atomic stores. Porting PBBS

code to Rust revealed this issue in PBBS to us, which can be �xed

by using relaxed atomic stores.

Observation 5: Rust programmers expressing arbitrary read-write

tasks are safe from data races, but are otherwise left scared.

6 TASK SCHEDULINGWITH RUST

We have so far assumed that the set of tasks at each parallel region

(third dimension of Fig. 1) is statically known or easily describ-

able. However, another dimension of (ir)regularity involves the task

dispatching scheme. Tasks may discover new work and dynam-

ically spawn new tasks that execute in the same parallel region.

We consider two such cases: (i) nested fork-join in the form of

divide-and-conquer using the existing Rayon task scheduler, and

(ii) dynamic priority-ordered scheduling using our Rust implemen-

tation of the MultiQueue [88, 95]. The former is well-structured,

with each parent task waiting for its children to join. In the latter,

a parent pushes its children into a queue then �nishes its own

execution. Worker threads later pop and run the children.

Fork-join scheduling: Divide-and-conquer is a popular technique

which involves dividing a problem into sub-problems, solving them

recursively, and merging the results. Sub-problems are easily solved

in parallel because they are independent [9, 87]. Listing 9’s merge

sort partitions an array in two and spawns a task to sort each part.

Forking and joining tasks in divide-and-conquer is straightfor-

ward and fearless with Rust. The join function o�ers a safe and

high-level abstraction, and Rayon’s well-established reputation

gives con�dence in a correct implementation. Consequently, the

programmer only fears concurrency errors related to shared data

accesses (Sec. 4,Sec. 5). With divide-and-conquer, children tasks

should not have con�icting concurrent accesses, which rustc stat-

ically veri�es by tracking lifetimes.

We did not observe non-strict fork-join [10] in our benchmarks,

where child tasks join any task. However, we expect more chal-

lenges with Rust. This pattern could have arbitrary read-write tasks

on unstructured data, scaring programmers (Sec. 5.2).

Dynamic priority scheduling: Some algorithms require [29] or

prefer [80] tasks to execute in some priority order, necessitating

manual threadmanagement.We examine theMultiQueue (MQ) [95]

concurrent priority scheduler. The MQ wraps a vector of sequen-

tial priority queues, each guarded by a lock. Push picks a random

queue, locks it, and pushes the task. Pop locks two random queues,

and pops from the queue with the higher priority top task. MQ

approximates a sequential priority order rank with probabilistic

1 fn sort(input: &[T], output: &mut [T]) {

2 if input.len() <= Threshold { ... } // go sequential

3 else {

4 let mid = output.len() / 2;

5 let (l_in, r_in) = input.split_at(mid);

6 let (l_out, r_out) = output.split_at_mut(mid);

7 rayon::join( || sort(l_in, l_out), || sort(r_in, r_out) );

8 ... // merge the two sorted halves

9 }

10 }

Listing 9: Merge sort using the divide-and-conquer pattern.
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rank guarantees [95]. Our bfs and sssp use the MQ with long-

running worker threads that pop tasks from the MQ then execute

them (potentially pushing new tasks) until the MQ is empty.

Programmer fear hinges on (i) the MQ correctness, (ii) proper

worker threads’ interactions with MQ, and (iii) tasks’ access pat-

terns. The �rst two primarily fall on the shoulders of the scheduler

implementer, whereas the third is relevant to the user of the API.

Implementing the MQ scheduler is nontrivial, and we found

Rust to leave us scared. MQ requires synchronization when threads

access queues, achievable through the standard library Mutex. Rust

Mutexes o�er two advantages over C++ Mutexes. First, they encap-

sulate objects which prevents unsynchronized access and rules out

atomicity violations on accesses to the internal sequential queues.

Second, releasing a lock is done by dropping the MutexGuard re-

turned by lock(), either manually or automatically when it goes

out of scope. This ensures that lock release is never forgotten. How-

ever, using these locks leaves the MQ implementer susceptible to

deadlocks and livelocks, and therefore scared. Nevertheless, once

implemented correctly, callers do not fear (i) and (ii) when using

the scheduler. This was presumably true of Rayon: its implementers

would have faced fears when implementing the library, but they

provided an interior-unsafe API to users.

Even assuming a correct Rust MQ implementation, using a dy-

namic priority scheduler via APIs is a mixed bag for programmers.

MQ-based applications often operate on unstructured data with

arbitrary read-write tasks (AW). As shown in Sec. 5.2, these irreg-

ular accesses are scary. However, this fear is not caused by tasks’

scheduling scheme but instead by their accesses.

Observation 6: Task scheduling does not directly a�ect the level

of fear of parallel programming in Rust but instead the data access

patterns of tasks.

7 EVALUATION

Our case study so far focuses on the programmer’s experience and

fear(lessness) in expressing various parallel patterns. This section

validates the importance and credibility of our derived conclusions

and suggestions by answering three questions:

(i) Is irregular parallelism common enough to cause concern?

It’s present in all benchmarks (29% of accesses).

(ii) Do our case study and suggested solutions lead to good per-

formance? Yes. RPB is 1.09× faster and 1.44× slower than C++-

based equivalents at 1 and 24 threads, respectively.

(iii) What are the costs of avoiding unsafe code? Using run-

time checks for SngInd and synchronization for AW increase

execution time by 1.3× and 2.1× on average at 1 and 24 threads.

7.1 Methodology

Experimental setup:We run benchmarks on anAWS c5.metal in-

stance with Ubuntu 22.04, disabling Intel Turbo Boost, hyperthread-

ing, and Linux NUMA balancing, consistent with prior work [105].

We evaluate performance both on one and 24 cores (threads) on one

socket. We compile RPB with rustc v1.69.0, in release mode (equiv-

alent to LLVM’s -O3). We use Rayon v1.7.0. We compile the original

PBBS benchmarks with OpenCilk v2.0 [105] (a fork of LLVM 14)

with -O3. OpenCilk outperforms the library-based implementation

of Cilk [9]. We use wall-clock time to compare execution time.

Table 1: Ported benchmarks and their parallel access patterns.

Tasks’ Accesses Task
Regular Irregular dispatch

Abbrv. Benchmark name Inputs R
O

S
t
r
i
d
e

B
l
o
c
k

D
&
C

S
n
g
I
n
d

R
n
g
I
n
d

A
W

s
t
a
t
i
c

d
y
n
a
m
i
c

bw Burrows–Wheeler decode wiki [2] ✔ ✔ ✔ ✔ ✔ ✔

lrs longest repeated substring wiki ✔ ✔ ✔ ✔ ✔ ✔

sa su�x array wiki ✔ ✔ ✔ ✔ ✔ ✔

dr Delaunay re�nement kuzmin [2] ✔ ✔ ✔ ✔ ✔ ✔

mis maximal independent set link, road ✔ ✔ ✔ ✔ ✔

mm maximal matching rmat, road ✔ ✔ ✔ ✔ ✔

sf spanning forest link, road ✔ ✔ ✔ ✔ ✔

msf minimum spanning forest rmat, road ✔ ✔ ✔ ✔ ✔ ✔

sort comparison sort exp. [2] ✔ ✔ ✔ ✔ ✔

dedup remove duplicates exponential ✔ ✔ ✔ ✔

hist histogram exponential ✔ ✔ ✔ ✔ ✔

isort integer sort exponential ✔ ✔ ✔ ✔

bfs breadth-�rst search link, road ✔ ✔

sssp single-source shortest path link, road ✔ ✔

Table 2: Input graphs, their progeny, and their characteristics

Name Shorthand |+ | |� | |� |/|+ |

Hyperlink2012-hosts [74] link 101 M 2043 M 20.1
R-MAT graph [17] rmat 34 M 200 M 6.0
Full USA roads [1] road 24 M 58 M 2.4

Benchmarks: Table 1 lists the 14 benchmarks we ported to RPB,

along with their input sets and access patterns. For bw through sort,

we use PBBS’s existing C++ code. We implement the C++ versions

of bfs and sssp using PBBS’s graph data structure and our own

MultiQueue. We run each benchmark 10 times at 24 cores and 3

times at 1 core, and report mean execution times. For sort, we use

sample sort. Table 2 details the input graphs.

Coverage of Parallel patterns: We are not aware of any general-

purpose taxonomy classifying all parallel patterns programmers use.

The patterns in the “Structured Parallel Programming” book [73]

serve as a proxy to characterize the breadth of our study. There is

not a 1-to-1 mapping between our lower-level code-based patterns

and their higher-level algorithmic patterns, so we search for those

in our benchmarks. RPB uses 14 of 22 mentioned parallel patterns:

• Present: fork-join, map, stencil, reduction, scan, recurrence, pack,

geometric decomposition, gather, scatter, search, segmentation,

category reduction, and workpile.

• Absent: pipeline, superscalar sequences, futures, speculative

selection, expand, term graph rewriting, branch and bound, and

transactions.

Future work could further explore Rust’s handling of the latter.

7.2 Coverage of irregular parallelism

Irregular parallelism is abundant in PBBS as a tool for high perfor-

mance, so leaving it unsupported is unacceptable for a language

claiming to be “blazingly fast” [101]. The two following static ob-

servations support this claim.4

All RPB benchmarks have irregular parallelism. Table 1 shows

the parallel patterns (summarized in Table 3) that each benchmark

4Future work can evaluate the contribution of irregular parallelism at run time. How-
ever, static measurements better re�ect the programmer’s experience and fears.
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Supported by
safe Rust (11%) Supported by interior-unsafe

and static checks (60%)

Not supported or
dynamic checks (29%)

11%

52%

3%
5%13%

7%

9%

RO

Stride

Block

D&C

SngInd

RngInd

AW

Figure 3: Distribution of access patterns in RPB.

Table 3: Studied patterns and their safety levels.

Abbr. Write pattern Parallel expression
Fearle-
ssness

RO Read only (AXM) spawn(Rust) / par_iter(Rayon) F
Stride Striding par_iter_mut (Rayon) F
Block Blocking par_chunks_mut (Rayon) F
D&C Divide and Conquer join (Rayon) F
SngInd Single-valued indirection par_ind_iter_mut (ours) C
RngInd Ranged indirection par_ind_chunks_mut (ours) C
AW Arbitrary writes mix of above S

uses. Seven out of 14 have AW, scaring the programmer. Six have

SngInd but not AW, forcing the programmer to choose between com-

fort and performance. sort only has RngInd, so is comfortable to

express but not fearless. In short, Rust does not provide fearlessness

for any benchmark in RPB.

29% of accesses in RPB are irregular. Although irregular paral-

lelism is present, it is necessary to show that it is not a minor part

of the algorithm. We statically collect all accesses to shared data

structures inside parallel regions, then classify them based on their

pattern, which is illustrated in Fig. 3. Although most accesses are

instances of regular parallelism, 29% of them are not. Speci�cally,

the programmer is scared when expressing 9% of them (AW), has to

choose between comfort and performance for 13% of them (SngInd),

and is comfortable when expressing 7% of them (RngInd).

7.3 Performance of zero-cost Rust vs. C++

We evaluate the performance of our recommended Rust expressions

by comparing a version of RPB with the original PBBS and our C++

MultiQueue. In this version of RPB, we use unsafe operations to

implement SngInd and AW to mitigate performance degradation of

run-time safety checks. However, we use par_ind_chunks_mut to

express RngInd because its overhead is negligible.

1-thread performance comparison: PBBS and RPB di�er in both

language and runtime. We begin evaluation at 1 thread to side-

step di�erences in parallel runtime implementations such as work

stealing. Fig. 4(a) shows execution times of Rust and C++-based

benchmarks, normalized to C++5. RPB performs close to PBBS in

most benchmarks, demonstrating our port’s faithfulness. It also sug-

gests that Rayon’s static checks of regular parallelism and RngInd’s

run-time check are indeed static and cheap, respectively. Notably,

RPB surprisingly outperforms PBBS in 9 benchmark-input pairs by

up to 57% (sa). This may be due to Rust’s potential to transfer high-

level information to the compiler, such as annotating generated

5bw results for C++ are not reliable because they are using ParlayLib’s homegrown
runtime and not Cilk due to compilation errors. The discrepancy between road and
link results for bfs is consistent across additional road network vs power-law graphs.
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Figure 4: Execution time of RPB vs. PBBS at 1 and 24 threads.

Blue dots (right Y-axis) show scaling relative to 1c.

LLVM code with potentially more accurate alias information due to

AXM. However, future work is required for detailed characterization.

24-thread performance comparison: Fig. 4(b) shows execution

time at 24 threads. The blue dots represent scaling relative to the

same code at 1 thread, measured by the right Y-axis. Interestingly,

RPB scales worse than PBBS on all benchmarks. This can be caused

by ine�ciencies in our implementations, Rayon’s worse runtime

management, or OpenCilk’s better parallel code optimizations [105,

106]. Our 1-thread evaluation suggests that our implementation is

not ine�cient. sssp and bfs have worse scalability in Rust but do

not use Rayon, suggesting that the language and compiler may be

a part of the problem. However, this scaling degradation is worse

for the rest of the benchmarks that use Rayon. This suggests that

Rayon’s runtime management is also worse than Cilk’s.

7.4 Overheads of replacing unsafe code

In our benchmarks, there are many cases where tasks are algorith-

mically independent but Rust does not understand that, as shown

in Sec. 5.1. We used unsafe for those in the previous evaluation

because rustc was unconvinced that they are independent. Unsafe

code in a code base is the ultimate source of fear for programmers.

It can be replaced by pattern-speci�c interior-unsafe functions with

run-time checks or synchronization, reducing the fear to a comfort-

able level or restricting the set of possible errors, respectively.

Interior unsafe: We integrate par_ind_iter_mut into three of

seven benchmarks that use SngInd. This function has an expensive

run-time check but brings the programmer comfort. Fig. 5(a) shows

the execution times of this comfortable version normalized to the

previous scary unsafe one. SngInd is a small part of bw, so the

overhead is negligible. lrs and sa have not only huge overhead

but also worse scaling.
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Figure 5: Overheads of dynamic o�set checking for SngInd or

unnecessary synchronization for SngInd and AW at 24 threads.

Unnecessary Synchronization: Although unnecessary for tasks

with independent access sets, synchronization can also replace un-

safe blocks but does not reduce fear. Fig. 5(b) uses synchronization

primitives to implement AW and SngInd. When the benchmarks use

atomics (all except hist), the overhead is negligible due to not using

atomic read-modify-write operations (RMW) and tagging loads and

stores with Relaxed ordering, making them almost zero-cost but

scary. However, not every type has corresponding atomic support.

For example, large structs in hist cannot use atomics, requiring

Mutexes instead and causing a 4× slowdown.

8 RELATEDWORK

8.1 Rust and its type system

There has been a long search for sound and expressive type systems

inspired by Milner’s observation [77] that “well-typed expressions

do not go wrong.” Linear type systems restrict resource usage by

allowing objects to be used only once [127], which is too restrictive.

Ownership-based types annotate each value with its owner and

drop values as their owners go out of scope [21, 22]. Region-based

memory management deallocates all allocated memory in a region

when it ends [124]. These techniques have inspired numerousworks

that have demonstrated their bene�ts [16, 40, 91, 128], modi�ed

existing popular programming languages [31, 45, 56], and built

more powerful type systems [91, 126]. Nevertheless none of these

made their way to—nor gained popularity in—the industry.

Rust borrows ideas from these techniques to establish itself as a

safe programming language. Prior work has studied the program-

mer’s experience [59, 136, 138]. Crichton conducted a case study to

evaluate the usability of rustc error messages in guiding program-

mers to solve their ownership errors [23]. Fulton et al. surveyed

developers and drew conclusions about Rust’s ease of use and learn-

ing curve [41]. While Rust’s creators did not formally prove its

safety, others formally modeled subsets of Rust to verify the sound-

ness of the type system for those subsets [49, 58, 72, 129]. Rust also

allows the use of unsafe Rust that has prompted research into its

practical usage [4, 35, 50], vulnerabilities in unsafe blocks [85], mit-

igation solutions [67, 96], and retaining performance bene�ts [57].

Prior work also evaluated and improved Rust’s interactions with

parallelism. Although some referenced proofs consider concurrency

and parallelism [58], the use of unsafe Rust, coupled with consid-

ering subsets in the proofs, implies that many concurrency bugs

remain possible in Rust. Like us, prior work tried to question the

fearlessness of Rust but concentrated on evaluating and categoriz-

ing bugs found in real-world system software and libraries [89, 135].

However, target applications in these works do not encompass all

the types of parallelism we discussed in this work and mainly fo-

cus on regular and/or coarse grain thread-level parallelism. Others

enhanced Rust’s expressiveness to e�ciently support speci�c data

structures [133] or increased concurrency safety by adding more

guarantees [25], but these do not cover all types of parallelism.

8.2 Regular vs irregular parallelism

In regular parallelism, tasks and dependences are known statically,

enabling the representation of a safe schedule pre-execution using

tools like task dependence graphs [36, 64]. Programming languages

and libraries facilitate the expression of parallel tasks in contexts

such as data parallelism [8, 26], data�ow parallelism [90, 121], and

fork-join parallelism [9, 10]. Compiler analyses identify parallelism

in few cases [13, 75, 79, 94, 100], and runtime systems balance work-

load [10] and coarsen tasks [137]. Given the widespread support

for regular parallelism, prior work focuses on its usability [81, 94].

In irregular parallelism, tasks reveal their dependences as they

execute, making task dependence graphs unsuitable for static analy-

ses [87]. While launching parallel tasks is straightforward, ensuring

a correct ordering between them and their accesses presents chal-

lenges. Broadly, three approaches exist for addressing this issue:

pessimistic synchronization [117], optimistic speculation [65, 92,

111], and hybrid methods [7, 47, 132]. Among these, prior work

on transactional memory (TM) is most related as it appeared to be

a silver bullet [84] to ease parallel programming. Like this paper,

prior work reported experience in using TM on selected algorithms

and real-world applications [42, 62, 69, 108, 139]. Other work in TM

usability performed user studies in classrooms [84, 97].

Parallel programming pitfalls have been studied extensively, and

researchers classi�ed them into categories such as race condition,

atomicity violation [39], deadlock, livelock, order violation [68],

non-determinism [66], and priority inversion. However, Rust only

guarantees to eliminate data races. Prior work aimed to detect data

races statically [14, 20, 60, 61, 120] or dynamically [32, 34, 51, 82,

104, 109], or prevent them via formal type systems [5, 16, 37, 38].

Rust takes the last approach; safe Rust code is data-race-free. Yet,

freedom from data races does not imply freedom from all errors [39].

9 CONCLUSIONS

Easy parallelism should be easy for programmers to express and

Rust �nally grants this in a mainstream language. Through its

ownership-based type system, Rust, coupled with Rayon, detects

concurrency bugs at compile time for read-only and regular paral-

lelism. However, the notorious cases of irregular parallelism with

indirect and arbitrarily written addresses remain as di�cult as ever,

requiring synchronization or fragile interior unsafe functions with

expensive run-time checks. On one hand, Rust does not detect con-

currency errors such as deadlocks, livelocks, atomicity violations,

or order violations. On the other hand, the overheads of run-time

checks hinders the bene�ts of parallelism. Consequently, the pro-

grammer must choose between fear or overheads. Rust’s fearless

concurrency is an exciting advance for the easy cases, but remains

over hyped when parallel programming gets hard.
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A JUSTIFICATION FOR THE ADOPTION OF
RAYON FOR TASK-BASED PARALLELISM

This appendix provides the rationale for using Rayon as the task-

parallel framework. We use a simple microbenchmark that updates

every element of a vector with the hash of the element’s index. We

adapt the hash function from PBBS [2, 113], shown in Listing 10.

We evaluate di�erent techniques to parallelize this process, and

compare those to a sequential version in Listing 11. Listing 12 shows

the Rayon version, which changes the sequential code with net zero

lines, swapping iter_mut with par_iter_mut. Sec. A.1 attempts

to parallelize using only the Rust standard library.

A.1 Parallelization with Rust standard library

To imitate the simplicity of the sequential and Rayon versions,

Listing 13 naively launches a thread per task. However, due to the

small size of the tasks in this example, the overheads of launching

tasks outweighs the gains of parallelism. This version is likely

slower than the sequential one. Moreover, for large inputs, this code

launches a large number of threads, �lling the stack and leading to

program termination.

1 fn task(e: &mut usize) {

2 let mut v = e.overflowing_mul(3_935_559_000_370_003_845).0;

3 v = v.overflowing_add(2_691_343_689_449_507_681).0;

4 v ^= v >> 21;

5 v ^= v << 37;

6 v ^= v >> 4;

7 v = v.overflowing_mul(4_768_777_513_237_032_717).0;

8 v ^= v << 20;

9 v ^= v >> 41;

10 v ^= v << 5;

11 *e = v;

12 }

Listing 10: A hash function form PBBS as our task.
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1 fn serial_hash(v: &mut [usize]) {

2 v.iter_mut()

3 .for_each(task);

4 }

Listing 11: Sequentially replacing v[i] with its hash.

1 use rayon::prelude::*;

2 fn par_hash(v: &mut [usize]) {

3 v.par_iter_mut()

4 .for_each(task);

5 }

Listing 12: Element-wise hashing of v via Rayon.

1 use std::thread::scope;

2 fn par_hash_1(v: &mut [usize]) {

3 scope(|s| {

4 let mut threads = Vec::new();

5 v.iter_mut().for_each(|vi| {

6 threads.push(s.spawn(|| task(vi))); });

7 threads.into_iter().for_each(|t| t.join().unwrap());

8 });

9 }

Listing 13: Launching a thread per task (iteration).

1 use std::thread::{scope, available_parallelism};

2 fn par_hash_2(v: &mut [usize]) {

3 let num_threads = available_parallelism() as usize;

4 let elements_per_thread = ((v.len()+num_threads-1)/num_threads)+1;

5 let mut chunks = v.chunks_mut(elements_per_thread);

6 scope(|s| {

7 let mut threads = Vec::new();

8 for _ in 0..num_threads {

9 let chunk = chunk.next().unwrap();

10 threads.push(s.spawn(|| v.iter_mut()

11 .for_each(task))));

12 }

13 threads.into_iter().for_each(|t| t.join().unwrap());

14 });

15 }

Listing 14: Launching a thread per core and splitting v.

To drive down the overheads, Listing 14 coarsens tasks. It slices

the vector into n chunks, where n is equal to the number of cores,

and launches a thread to process each chunk. This implementation

is prone to load imbalance between threads—all threads but the

straggler remain idle until the last thread �nishes.

To mitigate the load imbalance issue, Listing 15 slices the vector

into multiple chunks, much more than the number of available

cores, and puts these jobs in a queue. Then worker threads get jobs

from this queue and execute them until none remain.

As more performance optimizations are added, the complexity

and lines of code (LOC) increases. The Rayon version already pro-

vides these and other performance techniques, such as dynamic

scheduling through work stealing, yet requires the fewest LOC

through its elegant interface.

1 use std::thread::{scope, available_parallelism};

2 use std::sync::Mutex;

3 fn par_hash_3(v: &mut [usize]) {

4 let num_threads = available_parallelism() as usize;

5 let elements_per_job = 10000;

6 let jobs = v.chunks_mut(elements_per_job);

7 let jobs = Mutex::new(jobs);

8 scope(|s| {

9 let mut threads = Vec::new();

10 for _ in 0..num_threads {

11 threads.push(s.spawn(|| {

12 loop {

13 let mut jobs = jobs.lock().unwrap();// lock

14 let job = jobs.next(); // get a job

15 std::mem::drop(jobs); // unlock

16 if let Some(job) = job { // if job existed,

17 v.iter_mut() // process serially

18 .for_each(task);

19 } else { break; } // if not, exit

20 }}));

21 }

22 threads.into_iter().for_each(|t| t.join().unwrap());

23 });

24 }

Listing 15: A software runtime using a job queue of v’s slices.
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Figure 6: Run times of di�erent implementations.

A.2 Evaluation

Fig. 6 illustrates the run times for each of these implementations.

Rayon performs the best while having least amount of code. To mea-

sure these run times, we follow the same methodology as Sec. 7.1,

except that we target a 16-core machine and execute each bench-

mark 1000 times. The vector we use in this microbenchmark has

10
9 elements. In our example, tasks have almost equal lengths; we

expect even more favourable results for Rayon when tasks have

varying lengths, amplifying the bene�ts of dynamic scheduling.
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